menu MENU
Zheshen Zhang
Zheshen ZhangAssociate ProfessorElectrical Engineering and Computer Science

Publications


Selected Recent Publications

Demonstration of entanglement-enhanced covert sensing, S. Hao, H. Shi, C. Gagatsos, M. Mishra, B. Bash, I. Djordjevic, S. Guha, Q. Zhuang, and Z. Zhang, Phys. Rev. Lett. 129, 010501 (2022). [link]

Quantum-enhanced data classification with a variational entangled sensor network, Y. Xia, W. Li, Q. Zhuang, and Z. Zhang, Phys. Rev. X 11, 021047 (2021). [link] See also the Viewpoint highlight article by Seth Lloyd.

Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity, S. Hao, H. Shi, W. Li, J. H. Shapiro, Q. Zhuang, and Z. Zhang, Phys. Rev. Lett. 126, 250501 (2021). [link]

Entanglement-Assisted Absorption Spectroscopy, H. Shi, Z. Zhang, S. Pirandola, and Q. Zhuang, Phys. Rev. Lett. 125, 180502 (2020). [link]

Demonstration of a Reconfigurable Entangled Radio-Frequency Photonic Sensor Network, Y. Xia*, W. Li*, W. Clark, D. Hart, Q. Zhuang, and Z. Zhang, Phys. Rev. Lett. 124, 150502 (2020). [link]

Supervised learning enhanced by an entangled sensor network, Q. Zhuang and Z. Zhang, Phys. Rev. X 9, 041023 (2019). [link]

Journal Publications

[47] Entanglement-Enhanced Optomechanical Sensing, Y. Xia, A. R. Agrawal, C. M. Pluchar, A. J. Brady, Z. Liu, Q. Zhuang, D. J. Wilson, and Z. Zhang, arXiv:2210.16180. [link]

[46] Quantum receiver enhanced by adaptive learning, C. Cui, W. Horrocks, S. Guha, N. Peyghambarian, Q. Zhuang, and Z. Zhang, to appear in Light: Science and Applications. arXiv:2205.07755 [link]

[45]  Entangled Sensor-Networks for Dark-Matter Searches, A. J. Brady, C. Gao, R. Harnik, Z. Liu, Z. Zhang, and Q. Zhuang, PRX Quantum 3, 030333 (2022). [link]

[44]  Demonstration of entanglement-enhanced covert sensing, S. Hao, H. Shi, C. Gagatsos, M. Mishra, B. Bash, I. Djordjevic, S. Guha, Q. Zhuang, and Z. Zhang, Phys. Rev. Lett. 129, 010501 (2022). [link]

[43] Continuous-variable quantum repeaters based on bosonic error-correction and teleportation: architecture and applications, B.-H. Wu, Z. Zhang, and Q. Zhuang, Quantum Sci. Technol. 7, 025018 (2022). [link]

[42] Quantum-enhanced data classification with a variational entangled sensor network, Y. Xia, W. Li, Q. Zhuang, and Z. Zhang, Phys. Rev. X 11, 021047 (2021). [link]

[41] Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity, S. Hao, H. Shi, W. Li, J. H. Shapiro, Q. Zhuang, and Z. Zhang, Phys. Rev. Lett. 126, 250501 (2021). [link]

[40] Distributed Quantum Sensing (invited review), Z. Zhang and Q. Zhuang, Quantum Sci. Technol. 6, 043001 (2021). [link]

[39] Entanglement-assisted capacity regions and protocol designs for quantum multiple-access channels, H. Shi, M.-H. Hsieh, S. Guha, Z. Zhang, and Q. Zhuang, npj Quantum Info. 7, 74 (2021).  [link]

[38] Development of quantum interconnects for next-generation information technologies, D. Awschalom, K. K. Berggren, H. Bernien, S. Bhave, L. D. Carr, P. Davids, S. E. Economou, D. Englund, A. Faraon, M. Fejer, S. Guha, M. V. Gustafsson, E. Hu, L. Jiang, J. Kim, B. Korzh, P. Kumar, P. G. Kwiat, M. Lončar, M. D. Lukin, D. A. B. Miller, C. Monroe, S. W. Nam, P. Narang, J. S. Orcutt, M. G. Raymer, A. H. Safavi-Naeini, M. Spiropulu, K. Srinivasan, S. Sun, J. Vučković, E. Waks, R. Walsworth, A. M. Weiner, and Z. Zhang, PRX Quantum 2, 017002 (2021). [link]

[37] Entanglement-Assisted Absorption Spectroscopy, H. Shi, Z. Zhang, S. Pirandola, and Q. Zhuang, Phys. Rev. Lett. 125, 180502 (2020). [link]

[36] Quantum computing with multi-dimensional continuous-variable cluster states in a scalable photonic platform, B.-H. Wu, R. N. Alexander, S. Liu, and Z. Zhang, Phys. Rev. Research 2, 023138 (2020). [link]

[35] Demonstration of a Reconfigurable Entangled Radio-Frequency Photonic Sensor Network, Y. Xia*, W. Li*, W. Clark, D. Hart, Q. Zhuang, and Z. Zhang, Phys. Rev. Lett. 124, 150502 (2020). [link]

[34] Practical route to entanglement-enhanced communication over noisy bosonic channels, H. Shi. Z. Zhang, and Q. Zhuang, Phys. Rev. Applied 13, 034029 (2020). [link]

[33] Supervised learning enhanced by an entangled sensor network, Q. Zhuang and Z. Zhang, Phys. Rev. X 9, 041023 (2019). [link]

[32] Wave function engineering for spectrally-uncorrelated biphotons in the telecommunication band based on a machine-learning framework, C. Cui, R. Arian, S. Guha, N. Peyghambarian, Q. Zhuang, and Z. Zhang, Phys. Rev. Applied 12, 034059 (2019). [link]

[31] Covert sensing using floodlight illumination, C. N. Gagatsos, B. Bash. A. Datta, Z. Zhang, and S. Guha, Phys. Rev. A 99, 062321 (2019). [link]

[30] Repeater-enhanced distributed quantum sensing based on continuous-variable multipartite entanglement, Y. Xia, Q. Zhuang, W. Clark, and Z. Zhang, Phys. Rev. A 99, 012328 (2019). Selected as an Editor’s Suggestion article. [link]

[29] Security-proof framework for two-way Gaussian quantum-key-distribution protocols, Q. Zhuang, Z. Zhang, N. Lütkenhaus, and J. H. Shapiro,  Phys. Rev. A 98, 032332 (2018). [link]

[28] High-order encoding schemes for floodlight quantum key distribution, Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. A 98, 012323 (2018). [link]

[27] Experimental quantum key distribution at 1.3 Gbit/s secret-key rate over a 10-dB-loss channel, Z. Zhang, C. Chen, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, Quantum Sci. Technol. 3, 025007 (2018). [link]

[26] Distributed quantum sensing using continuous-variable multipartite entanglement, Q. Zhuang, Z. Zhang, and J. H. Shapiro, Pays. Rev. A 97, 032329 (2018). [link]

[25] Entanglement-enhanced lidars for simultaneous position and velocity measurements, Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. A 96, 040304(R) (2017). [link]

[24] Quantum illumination for enhanced detection of Rayleigh-fading targets, Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. A 96, 020302(R) (2017). [link]

[23] Entanglement-enhanced Neyman-Pearson target detection using quantum illumination, Q. Zhuang, Z. Zhang, and J. H. Shapiro, J. Soc. Am. B 34, 1567-1572 (2017). [link]

[22] Optimum mixed-state discrimination for noisy entanglement-enhanced sensing, Q. Zhuang, Z. Zhang, and J. H. Shapiro, Phys. Rev. Lett. 118, 040801 (2017). [link]

[21] Floodlight quantum key distribution: Demonstrating a framework for high-rate secure communication, Z. Zhang, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. A. 95, 012332 (2017). [link]

[20] Efficient generation and spectral characterization of high-purity biphotons, C. Chen, C. Bo, M. Y. Niu, F. Xu, Z. Zhang, J. H. Shapiro, and F. N. C. Wong, Opt. Express 25, 7300 (2017). [link]

[19] High-rate field demonstration of large-alphabet quantum key distribution, C. Lee, D. Bunandar, Z. Zhang, G. R. Steinbrecher, P. B. Dixon, F. N. C. Wong, J. H. Shapiro, S. A. Hamilton, and D. Englund, Submitted. arXiv:1611.01139. [link]

[18] Floodlight quantum key distribution: A practical route to Gbps secret-key rates, Q. Zhuang, Z. Zhang, J. Dove, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. A 94, 012322 (2016). [link] 

[17] Entanglement-enhanced sensing in a lossy and noisy environment, Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 114, 110506 (2015). [link]

[16] Practical high-dimensional quantum key distribution with decoy states, D. Bunandar, Z. Zhang, J. H. Shapiro, and D. Englund, Phys. Rev. A 91, 022336 (2015). [link]

[15] Finite-key analysis of high-dimensional time-energy entanglement-based quantum key distribution, C. Lee, J. Mower, Z. Zhang, J. H. Shapiro, and D. Englund, Quantum Inf. Process. 14, 1005 (2015). [link]

[14] Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding, T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro and F. N. C. Wong, New J. Phys. 17, 022002 (2015). [link]

[13] Entanglement-based quantum communication secured by nonlocal dispersion compensation, C. Lee, Z. Zhang, G. Steinbrecher, H. Zhou, J. Mower, T. Zhong, L. Wang, X. Hu, R. D. Horansky, V. B. Verma, A. E. Lita, R. P. Mirin, F. Marsili, M. D. Shaw, S. W. Nam, G. W. Wornell, F. N. C. Wong, J. H. Shapiro, and D. Englund, Phys. Rev. A 90, 062331 (2014). [link]

[12] Viewpoint: Two photons into one, Z. Zhang, Physics 7, 108 (2014). [link]

[11] Unconditional security of time-energy entanglement quantum key distribution using dual-basis interferometry, Z. Zhang, J. Mower, D. Englund, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 112, 120506 (2014). [link]

[10] Secure communication via quantum illumination, J. H. Shapiro, Z. Zhang, and F. N. C. Wong, Quantum Inf. Process. 13, 2171 (2014). [link]

[9] Entanglement’s benefit survives an entanglement-breaking channel, Z. Zhang, M. Tengner, T. Zhong, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 111, 010501 (2013). Editor’s suggestion and selected for a Viewpoint in Physics[link]

[8] High-dimensional quantum key distribution using dispersive optics, J. Mower, Z. Zhang, P. Desjardins, C. Lee, J. H. Shapiro, and D. Englund, Phys. Rev. A 87, 062322 (2013). [link]

[7] Full-band quantum-dynamical theory of saturation and four-wave mixing in graphene, Z. Zhang and P. L. Voss, Opt. Lett. 36, 4569 (2011). [link]

[6] The quantum noise of guided wave acoustic Brillouin scattering with applications to continuous-variable quantum key distribution, Z. Zhang, Q. D. Xuan, and P. L. Voss, J. Mod. Opt. 58, 988-993 (2011). [link]

[5] A 24 km fiber-based discretely signaled continuous-variable quantum key distribution system, Q. D. Xuan, Z. Zhang, and P. L. Voss, Opt. Express 17, 24244-24249 (2009). [link]

[4] Security of a discretely signaled continuous variable quantum key distribution for high rate systems, Z. Zhang and P. L. Voss, Opt. Express 17, 12090-12108 (2009). [link]

[3] Unsymmetrical quantum key distribution using tripartite entanglement, J. Xiong, Z. Zhang, N. Zhou, J. Peng, and G. Zeng, Commun. Theor. Phys. 47, 441-445 (2007). [link]

[2] An integrable optic-fiber coherent state quantum identification system, G. He, G. Zeng, J. Zhu, Z. Zhang, Q. Wang, X. Zhou, X. Qian, and J. Peng, Chin. J. Laser 34, 924-929 (2007). [link]

[1] Quantum identity authentication based on ping-pong technique for photons, Z. Zhang, G. Zeng, N. Zhou, and J. Xiong, Phys. Lett. A 356, 199-205 (2006). [link]